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SUMMARY

The paper is devoted to the further development of the particle transport method for the convection
problems with diffusion and reaction. Here, the particle transport method for a convection–reaction problem
is combined with an Eulerian finite-element method for diffusion in the framework of the operator-splitting
approach. The technique possesses a special spatial adaptivity to resolve solution singularities possible
due to convection and reaction terms. A monotone projection technique is used to transfer the solution
of the convection–reaction subproblem from a moving set of particles onto a fixed grid to initialize the
diffusion subproblem. The proposed approach exhibits good mass conservation and works with structured
and unstructured meshes.
The performance of the presented algorithm is tested on one- and two-dimensional benchmark problems.

The numerical results confirm that the method demonstrates good accuracy for the convection-dominated
as well as for convection–diffusion problems. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Convection–diffusion–reaction (CDR) problems to be considered in this paper arise in many
natural phenomena and industrial applications. The special feature of this kind of problems is
an ability to switch between parabolic and hyperbolic types with respect to the domination of
the diffusion or convection terms. The presence of discontinuities or high gradients, further here
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singularities, of the exact solution for the convection-dominated problems makes their numerical
resolution difficult, often resulting in either artificial oscillations or excessive numerical diffusion of
the solution. Over the last three decades, numerous techniques have been created in the framework of
Eulerian, Lagrangian and mixed Eulerian–Lagrangian concepts for the transient diffusion problems,
see, e.g. [1–5].

In the Eulerian methods, the solution moves with respect to a fixed grid, while in the La-
grangian methods a grid changes with the solution. In general, the fixed-grid methods are able
to produce accurate numerical solutions with high quality of discontinuities resolution for the
convection-dominated as well as for diffusion-dominated problems; however, the connection be-
tween time and space discretization may result in strict conditions on time and space step.
The Lagrangian methods, which are not confined by the stepping restrictions, may be a better
choice to treat transient problems; unfortunately, the moving mesh underlaying the computations
may be subjected to excessive distortion. Due to these reasons, a Lagrangian approach is often
combined with the Eulerian one to achieve a good accuracy for the solution of convection–
diffusion problems, see, for example, the Eulerian–Lagrangian localized adjoint method (EL-
LAM) [6–10], the Lagrange–Galerkin method [11, 12], the free-Lagrangian and semi-Lagrangian
methods [13–15], and the characteristics finite-element (FE) method [16, 17]. Here, an addi-
tional fixed grid is used to avoid severe distortion of the evolving grid. Other mixed Eulerian–
Lagrangian approaches for the CDR problems are based on splitting of the diffusion and convec-
tion operators and resolving each of them by the most suitable solver. Thus, for example, in the
class of particles-in-cell methods, which originally came from the computational plasma physics
([18, 19] and references in it), the reaction–diffusion is approximated by an Eulerian finite differ-
ence method, while for the convection a Lagrangian (characteristics based) one is used, see, for
example [20].

In this work we use the idea of operator-splitting to continue the development of the par-
ticle transport method (PTM), first presented in [21], for the case of a general CDR prob-
lem. An FE method is used here for the diffusion subproblem while all difficulties connected
with the hyperbolic operator on the convection part are resolved with PTM. The spatial adap-
tivity is used in the framework of meshless concept, see, e.g. [22, 23]. The solution of the
convection–reaction subproblem is carried out by a moving system of particles, that allows us
to avoid the big computational expenses due to full reconstruction of the mesh. The imple-
mentation of the operator-splitting means a presence of the projection between two grids, in
our case between moving particles and fixed mesh, that might be overly diffusive and, more-
over, it might not save mass (see, for instance, the discussions in [24–26]). Here, we use a
special, fast and monotone projection technique exhibiting a good mass conservation that has
been presented in the framework of the PTM in [21]. The main differences with respect to the
particle-in-cell approach is the spatial adaptivity in the regions of discontinuities and the projection
methods.

The paper is organized as follows. Section 2 is devoted to the formulation of the problem
and operator-splitting technique used in the proposed method. The description of the numerical
scheme is given in Section 3. Results of numerical experiments can be found in Section 4. In
[21] pure convection and one-dimensional diffusion are presented. Here we extend the work to the
two-dimensional CDR cases for such problems as layered reaction, the convection–reaction of a
Gaussian pulse, the mixing of hot and cold fronts and convection–diffusion of the Gaussian pulse.
The first two convection–reaction tests have been chosen to demonstrate the performance of the
introduced spatial adaptivity technique and to conduct the error analysis of the method. In the case
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of convection–diffusion of a Gaussian hill, the results are compared with the ones obtained by
fractional step finite difference methods [10]. We conclude with the problem of chromatographic
separation to show how the proposed technique works on a more general case of the system of
CDR equations in comparison with a pure Eulerian method, the method of lines (MOL). Some
conclusions are drawn in Section 5.

2. MATHEMATICAL MODEL AND OPERATOR SPLITTING

We consider the following CDR system.
Governing equation:

�u
�t

+ v · ∇u = D�u + Re(u, x, t) in � × (0, T ) (1)

where u = u(x, t) and the space variable x belongs to the domain �⊂ Rd , d = 1, 2, the time variable
t varies in the interval [0, T ], v= v(x, t) is the given solenoidal, i.e. divergence free, velocity field
on � ×[0, T ], D is the known constant diffusion coefficient. The reaction term takes the form
Re(u, x, t) = K (x, t)r(u), where K may be a (stepwise) discontinuous function of x.

Initial conditions:

u(x, 0) = u0(x) in � (2)

Boundary conditions:

u(x, t) = uin(x, t) on �in × (0, T ) (3)

�u(x, t) + �
�u
�n

(x, t) = uout(x, t) on �out × (0, T ) (4)

here, � and � are nonnegative constants, �in and �out are the portions of the domain bound-
ary �� (�in ∪ �out = ��), where, respectively, inflow and outflow boundary conditions are
defined.

The peculiarity of the described problem is that governing equation (1) might turn its type
from parabolic to hyperbolic when, respectively, the diffusion or convection term dominates. If the
diffusion coefficient D is very small, the degeneration of the differential operator gives rise to the
contribution of (1) with boundary conditions (3) and (4). Moreover, for a small D the approximation
of the solution, which may change rapidly, becomes a hard numerical problem. In this case, the
domination of the convective term might result in the spurious oscillations or smearing. Thus, it
is worth performing the operator splitting to separate the convection and diffusion parts.

To perform the operator splitting, described in [27], the time interval [0, T ] is divided into M
subintervals [tm−1, tm], m = 1, 2, . . ., M , where t0 = 0 and tM = T . Denote by u(m) the approxi-
mation to u(x, tm) (u(0) ≡ u0 is the given initial condition). Then on every time interval [tm−1, tm]
problem (1)–(4) is approximated by a sequence of two subproblems.
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(*) Convection–reaction subproblem:

�u
�t

+ (v · ∇)u = Re(u, x, t) in �× [tm−1, tm]

u(x, t) = u(m−1)(x) in �× {t = tm−1}
u(x, t) = uin(x, t) on �in × (tm−1, tm)

(5)

The solution of the convection–reaction subproblem, u(∗), defines an initial condition for the
diffusion subproblem.

(**) Diffusion subproblem:

�u
�t

− D�u = 0 in �× [tm−1, tm]

u(x, t) = u(∗)(x) in �× {t = tm−1}
u(x, t) = uin(x, t) on �in × (tm−1, tm)

�u(x, t) + �
�u
�n

(x, t) = uout(x, t) on �out × (tm−1, tm)

(6)

It gives the solution of CDR problem (1)–(4) on the mth time step, u(m). If the time step �t =
tm − tm−1 is a constant, the error of the splitting is known to be O(�t), see for details [27].

This kind of splitting will allow us to use an FE method for the diffusion subproblem, while
the transport part will be resolved with the PTM [21].

3. NUMERICAL TECHNIQUE

This section is devoted to the description of the numerical technique based on PTM in the framework
of operator splitting (*)–(**) for a CDR problem.

In the algorithm we use a combination of a stationary mesh in the domain, further called as
the grid, and a moving system of particles, further called as the particles. The grid is used for
solving the diffusion subproblem and an adaptive construction of the particle set. The convection
of the solution is carried out by the particles as well as integration of the reaction term. The shift
between the grid and the particles is implemented by linear interpolation for each grid node within
the projection procedure.

Thus, dividing the time integration by given time steps and supposing that initially we have
a fixed grid, the numerical technique to solve the CDR problem on the mth time step consists
of four main stages: (i) creation of the adaptive particle set in accordance with the solution’s
approximation at the previous time step, u(m−1); (ii) solving of convection–reaction subproblem
(*) on the time interval (tm−1, tm) by the PTM on the appropriate particle set; (iii) projection of
the intermediate solution u(∗) from the particle set onto the grid; and (iv) solving of diffusion
subproblem (**) on the grid by a standard Eulerian method for diffusion problems, for instance,
the Galerkin FE-discretization in space and some implicit discretization in time. These steps will
be explained in more detail below.
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3.1. Adaptive particle set

The particle set is used for the solution of convection–reaction subproblem (*) by means of PTM,
where special care is taken for the region of steep fronts or discontinuities. To locate the adaptive
set of particles the grid nodes are used. In general, the creation of the particle system for the
convection–reaction problem is based on two main ingredients: what is a priori known about the
singularities and how the solution may evolve during the integration. First of all, the singularities
due to initial and inflow values have to be taken into account. Additionally, the reaction may cause
regions of discontinuities or high gradients to appear during the computation, due to, e.g. different
reaction rates in the reactive domain or fast reactions between various components in a reactive
flow. So we should adapt the distribution of particles at the initial stage and near the inflow part
of the boundary, take into account what is known about the discontinuities of the reaction rate
function K = K (x, t), as well as monitor the solution.

The adaptivity procedures may be based on various indicator function values, further called here
as signal values. For singularities due to discontinuities or sharp fronts, the absolute value of the
gradient of the solution is employed as the signal. In addition, the examples presented below show
how areas with a smooth solution also require some attention to achieve reasonable accuracy when
using linear interpolation for the projection. Here, the absolute value of the second derivatives of
the solution is used as the signal for adaptivity. More details on the construction of the sharp and
smooth signal values can be found in [21].

The heuristics for creating particles on the basis of the signal values may, naturally, be im-
plemented in various ways. We shortly describe here the algorithm for the adaptivity introduced
in [21].

Let Gi be the signal value of the solution on the i th grid element and denote by Gmean and
Gmax the mean and the maximum of the signal value on the grid. If Ncurrent gives the number of
particles on the i th element so far, we add

Nadd = min{Nmax − Ncurrent, �(Gi )}

new particles on the i th element, where �≡ 0 on [0,Gmean) monotonically increases within
[Gmean,Gmax] and �(Gmax) = Nmax. Here Nmax is a user-defined number between, e.g. 5 and 10,
which gives the maximum number of particles allowed for one grid element. In our numerical
tests, a linear function on [Gmean,Gmax] has always been the choice for �. In this work we confine
ourselves to one- and two-dimensional cases, where an element of the grid is, respectively, an
interval and a triangle, but the implementation in three-dimensional case and in other types of
grids is absolutely analogous.

Considering convection–reaction subproblem (*) on the mth time step, we should implement the
adaptivity both at the initial stage of the time step, based on grid-solution u(m−1) and reaction rate
K , and during the computation on the region. Thus, after the initial adaptivity on the mth step, the
particle set will contain (some of) the grid points and points added by the prior knowledge of the
subproblem. Since we are typically interested in sharp fronts due to the reaction, the gradient-based
signal function G is used. The function’s value at new particles is interpolated by the projection
procedure to be discussed below on the m = 2, . . ., M time steps; at the initial, m = 1, time step,
the value is given by the initial condition function.

The adaptivity during the computation supplements new particles in the region of their lack,
developed due to convective transport of the particle system. The nodes and elements of the grid
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in this region form the basis for creation of new inflow particles: the nodes lying on the inflow
boundary �in become new particles and receive the value of the boundary condition function uin,
the elements are adapted by the algorithm discussed above. The inflow adaptivity has to take into
account the possible singularities developing due to different reaction rates in this particle-free
region. Thus, the elements that contain boundary nodes and, moreover, lie on the discontinuity lines
of the reaction rate function require special care; more particles, e.g. Nmax, should be generated
on them. These elements, called inflow edges in the following, can be found and marked a priori,
i.e. on the initial step, t = 0, by using the information from the set

S ={x ∈ �|K is discontinuous at x}
Thus, in the beginning of the simulation an integer array Q is constructed by the rule

Q(i)=

⎧⎪⎪⎨⎪⎪⎩
1 if the i th element is connected with �in

2 if the i th element is an inflow edge

0 otherwise

Then the inflow adaptivity on the mth time step uses the information from Q as follows.

• If Q(i)= 1, add �(Gi ) new particles on the i th element;
• If Q(i)= 2, add Nmax new particles;
• If Q(i)= 0, add Nadd = min{Nmax − Ncurrent, �(Gi )},

where the parameters Nmax, Ncurrent and �(Gi ) are determined by the algorithm for adaptivity.
The values u of the solution function associated with new particles, introduced by the in-

flow adaptivity, are also interpolated with the projection procedure to be discussed below. As an
alternative, they might also be computed by the reaction term using the corresponding time
shift, determined by the entry moments of the particles.

3.2. Convection–reaction by PTM

In the framework of the PTM, we consider the convection–reaction problem as a pair of ordinary
differential equations. Using the Lagrangian notation of the full derivative Equation (5) can be
rewritten in the form

du

dt
= Re(u, x, t) (7)

This equation means that the reaction applies to each fluid particle (infinitely small fluid volume)
individually. Hence, it must be integrated along the particles trajectories, defined by

dx
dt

= v(x, t) (8)

If one considers (7) along characteristics this equation appears as a (non-linear) ODE of the first
order. The initial condition is given by u0, uin provides influx for the fluid particles coming into
� through �in. Note that in the absence of the inflow boundary conditions, Equations (7) and (8)
may be solved simply as an ODE system by any suitable ODE solver.
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Thus on each time step, all the particles are assigned the values of function u, computed on the
previous time step, at the respective locations. To find the new particle positions, one has to solve
(8) on the time interval [tm−1, tm], m = 1, 2, . . . , with the initial condition at the moment tm−1

X(tm−1) =X0 (9)

where X0 is the vector of coordinates of particles, created at the initial stage of the mth time step.
Once the new position of the particles, X(tm), is found at the time instant tm , it is necessary to

determine novel values of the function u, which is subjected to reaction. Hence, one has to solve
(7) on the time interval [tm−1, tm], m = 1, 2, . . . , with the initial condition at the moment tm−1

u(X, tm−1) = u(m−1) (10)

where u(m−1) is the value of the function u computed on the previous time step (u(0) = u0).
Systems (8), (9) and (7), (10) may be solved by any ODE solver, e.g. in case of a stiff reaction

system by stiff solvers. In the numerical tests, we have always used the Runge–Kutta solver for
both systems. The order of the method accuracy is varied from the third to the fifth one in our
tests.

3.3. Projection

The projection procedure of the proposed technique consists of two main ingredients: a simple linear
interpolation—as an alternative to the ‘radial basis functions’ approximation typical for meshless
methods (see [28]) or L2-projection typical for the mesh-based methods (see [24])—and the global
discrete coordinate system (GDCS). This combination yields a computationally cheap technique,
which exhibits good mass conservation, to transfer data from the particle system onto the grid, as
demonstrated by numerical tests described below. The interpolation is performed sequentially for
each grid node on the minimal triangle, formed by particles closest to the node. Creating additional
global coordinates allows us to optimize the procedure of searching of a minimal triangle and to
achieve real inter-independence of the particles, as far as there is no need for an ordered storage
of them. Since for each grid node the neighbouring particles are known by GDCS in advance, the
complexity of the projection procedure is O(n), where n is the number of grid nodes. The detailed
discussion of the projection technique can be found in [21].

3.4. Diffusion by FEM

Finite-element methods are widely used in computational fluid dynamics, see, for example,
[29–31]. Here, we shall present only basic steps of the FE approximation.

Supposing that the computational domain � is presented in the form of triangular mesh �h ,
a solution of a diffusion equation in the framework of the FE discretization is introduced in the
following form:

u(x, t) = ∑
ûi (t)�i (x) (11)

where ûi (t) is a nodal or element value of the approximated solution to be found at time instant t ,
�i (x) is a shape function.

Substitution of (11) into (6), multiplication by a test function � j and integration of the obtained
equality over the domain � gives the weak formulation of the diffusion problem, which in matrix
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notation is formulated as

M
dû

dt
+ Kû =F (12)

If the test functions equal the shape functions, �i = �i (Galerkin weighting), then

Mi j =
∫

�
� j�i d�

Ki j =
∫

�
∇� j · (D∇�i ) d� +

∫
�out

�� j�i d�

Fj =
∫

�out

uout� j d�

The solution of the diffusion problem is defined by the solution of ODE (12) with the appropriate
initial condition at the initial time moment. This problem can be evaluated by either an explicit
or an implicit solver; in our numerical experiments the set of MATLAB solvers for ordinary
differential equations is used.

The semidiscretization presented by (12) can be also achieved by means of the finite differences.
In our numerical tests the MOL with finite difference space discretization is used for a one-
dimensional problem of chromatographic separation.

4. NUMERICAL EXPERIMENTS

In this section we consider five test problems: layered reaction, mixing of hot and cold fronts,
convection–reaction and convection–diffusion of the Gaussian hill, and the chromatographic sep-
aration problem as an example of a full CDR system. The examples will allow us to evaluate
the proposed method, especially with respect to artificial oscillations and preservation of the total
mass.

The relative mass conservation error is measured as follows:

�m = |Mex − Map|
Mex

where the exact total mass, Mex, ∫
�
uex(x, t) dx

is known in the examples, and the total approximate mass, Map, is computed by∫
�
uap(x, t) dx= ∑

Ti⊂�h

∫
Ti
uap(x, t) dx

where uex(x, t) and uap(x, t) are, respectively, the exact and approximated solutions and Ti is an
element of the grid �h , characterized by the grid size h of the discretization.
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In the case of a smooth solution function (see the Gaussian pulse’s case), we also monitor the
error in the max, l∞, norm and in the L2-norm

�∞ = max
i=1,n

|uapi − uexi |

�2 =
√

n∑
i, j=1

h2(uapi − uexi )2

where uexi and uapi are, respectively, the exact and approximated solutions in node i , n is the
number of grid nodes, and h is the characteristic size of the grid.

An unstructured Delaunay triangulation to be used in two-dimensional numerical tests is gen-
erated by the PDE Toolbox of the software package MATLAB, while a uniform distribution of
points is implemented in the one-dimensional case presented.

4.1. Experiment 1: convection–reaction problem

The first set of numerical experiments is devoted to the extension of the particle transport method
on the convection problems with reaction. Here, we shall consider the problem of layered reaction
to demonstrate the technique to resolve the singularities developed due to different reaction rates
in the domain as well as the inflow boundary conditions. In addition, a problem with a smooth
solution, Gaussian pulse, is solved to analyse the error of the approximation obtained by PTM;
for this test the mass conservation error and the error in l∞ are checked.

4.1.1. Layered reaction. The problem of layered reaction models, for example, flow of immiscible
fluids, where each fluid has its own rate of reaction, and the system is described as follows:

ut + (v · ∇)u = −Ku in � × [0, 2] (13)

u(x, 0) = u0 = 0 in � (14)

u(x, t) = uin = 1.0 in �in × (0, 2) (15)

where the space variable x= (x1, x2) belongs to the domain �=[0, 2.1]× [0, 1.0], t varies in
the time interval [0, 2], and �in ={x|x1 = 0.0} is an inflow portion of the domain boundary. The
convective velocity field is given as

v={4x2(1 − x2), 0}
Here, the reaction rate function K is a piecewise constant function in � (see also the sketch in
Figure 1)

K (x)=

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

0.6 if x2 ∈
[
0, 1

3

)
1.6 if x2 ∈

[
1
3 ,

2
3

]
0.6 if x2 ∈

(
2
3 , 1

]
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X

X2

1
0 2.1

1

K1

K1

K2

Figure 1. Layered reaction. Reaction rate function.

The PTM time step is chosen as �t = 0.1. The movement of the particles and reaction are
evaluated by the third-order Runge–Kutta method. The starting system of particles is a set of 1234
points non-uniformly distributed on �. An unstructured mesh with 10 146 nodes is used for the
projection. Since the zero-initial condition is chosen and a free region develops near �in due to
convective transport of the particles, the adaptivity procedure concerns the inflow part only. Here,
the discontinuous set of the reaction term is not empty,

S ={x ∈ �|x2 = 1
3 or x2 = 2

3 }
thus, the inflow adaptivity should treat inflow edges in a special way, i.e. add more particles on
them. The results of the sharp front inflow adaptivity after five time steps are presented in Figure 2.
It can be seen that the addition of extra points on the inflow edges, see Figure 2(c) and (e), allows us
to resolve the solution in the vicinities of high gradient without artificial smearing or oscillations.
In this example, the interpolated values are used for the new inflow particles.

The particle distribution and the solution of the problem after 10, 15 and 20 time steps are
presented in Figures 3 and 4. The inflow adaptivity based on uin and the set S is implemented
after each time step to avoid the artificial oscillations of the solution near the inflow portion of the
boundary.

4.1.2. Convection–reaction of the Gaussian pulse. We consider the following problem:

ut + (v · ∇)u = −Ku in � ×[0, 2�] (16)

u(x, 0) = u0(x)= exp

(
− (x1 − a)2 + (x2 − b)2

2�2

)
on � (17)

where x= (x1, x2) ∈ � =[0, 1.0]× [0, 1.1], t ∈ [0, 2�]. The initial condition function u0 is a
Gaussian hill centred at the point (a, b)= (0.35, 0.5) and with standard deviation � = 0.06, see
Figure 5. The convective velocity field is given as

v={x2 − 0.5,−x1 + 0.5}
that is the rotation of the Gaussian pulse around the point (0.5, 0.5). Reaction rate K is a function
of t

K (t) = 3 cos(2t)

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1215–1238
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Figure 2. Layered reaction. Inflow adaptivity: (a) not adaptive supplement of new particles;
(b) inflow adaptivity without taking into account the inflow edges; (c) inflow adaptivity based
on the set S; (d) solution after five time steps without the inflow adaptivity; and (e) solution

after five time steps with the inflow adaptivity.

Figure 3. Layered reaction. Particle distribution: (a) t = 1.0; (b) t = 1.5; and (c) t = 2.0.

The simulation time step is chosen as �t = �/10. The initial adaptivity with Nmax = 4 consists
of both the smooth and sharp front procedures; their effect on the particles set can be seen in
Figure 6. The movement of the particles and integration of the reaction term are accomplished
by the fifth-order Runge–Kutta method. Figure 7 demonstrates the solution of the problem for an
unstructured projection grid with 4381 nodes and an initial non-uniform particle set with 2228
points.

The error analysis was done with respect to the total number of nodes and particles. The relative
error in l∞-norm, �∞, and relative mass conservation error, �m, were checked. The results, presented
in Table I and Figure 8, indicate that the particle transport method achieves a second-order accuracy
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Figure 4. Layered reaction. Solution: (a) t = 1.0; (b) t = 1.5; and (c) t = 2.0.
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Figure 5. Convection–reaction of the Gaussian pulse: initial condition.

for mass conservation and in l∞-norm with respect to h = 1/
√
n + N , where n is the number of

nodes and N is the number of particles.

4.2. Experiment 2: convection–diffusion problem

The performance of the particle transport method in the framework of the operator-splitting tech-
nique for the convection–diffusion problems will be demonstrated in this subsection on the problem
of the mixing of hot and cold fronts and convection–diffusion of the Gaussian pulse.

4.2.1. Mixing of hot and cold fronts. We consider a problem, suggested in [32], of mixing of hot
and cold fronts on the domain �={x1 ∈ [0, 8]}× {x2 ∈ [0, 8]}. Here, the initial temperature profile
is a tangential function with the maximum value 0.964 on the edge x2 = 0 and the minimum value
−0.964 on x2 = 8, see Figure 9,

u0(x)= − tanh

(
x2 − 4

2

)
During the simulation the steep front between the minimum and maximum temperatures is twisted
by the rotation velocity field

v=
(

−Tv(x2 − 4)

r
,
Tv(x1 − 4)

r

)
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Figure 6. Convection–reaction of the Gaussian pulse. Initial adaptivity: (a) initial
distribution and the contour plot of the initial condition; (b) sharp front adaptivity;

(c) smooth adaptivity; and (d) ‘sharp plus smooth’ adaptivity.

Here, r is the distance between a point (x1, x2) and the rotation origin (4, 4), the coefficient Tv

is equal to the ratio vt/vtmax , where vt = sech2(r) tanh(r) is a tangential velocity at (x1, x2) and
vtmax is the maximum tangential velocity on �. We shall evaluate the problem with two values of
diffusion coefficient, namely D = 10−5 and 10−2.

The time step of the computation is �t = 0.5, t ∈ [0, 10]. The grid and the initial set of particles
are non-uniform and have the same amount of points, namely 7105. At each time step, the particles
are generated from the grid and adapted by the steep-front adaptivity with Nmax = 1. The movement
of the particles is approximated by the fifth-order Runge–Kutta method. The diffusion subproblem
is resolved by the finite-element solver within MATLAB.

The distribution of the particles during the simulation for the case of small diffusion (convection–
dominated case) is presented in Figure 10; it can be seen that new points are introduced in the
vicinity of the developing vortex that helps to catch narrow structures around the rotation origin.
In Figure 11 the numerical solutions obtained by PTM at t = 0.5, 5 and 10 are presented. Here,
the adaptivity allows us to reach high resolution of the narrow steep fronts around the rotation
origin on the relatively sparse grid.

The solution of the problem with a larger diffusion coefficient, D = 10−2, is presented in Figure
12. Here, the fronts of different temperature are mixed both by the velocity field and by the
dispersion process; thus the steep fronts diffuse in the middle of the domain.
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Figure 7. Convection–reaction of the Gaussian pulse. Solution: (a) t = 0.0; (b) t = 1.5708; (c) t = 2.5133;
(d) t = 3.1416; (e) t = 5.6549; and (f ) t = 6.2832.

Table I. Convection–reaction of the Gaussian pulse. Error analysis with respect to the
total number of the grid nodes and particles. One full rotation, �t = �/10.

# Particles # Nodes Sum # �m �∞
458 2228 2686 5.4e−03 2.37e−02

2843 4381 7224 2.2e−03 1.80e−02
3275 4381 7656 2.1e−03 9.50e−03
4076 8688 12 766 1.8e−03 1.01e−03
8688 8688 17 376 8.0e−04 6.70e−04

4.2.2. Convection–diffusion of the Gaussian pulse. For the sake of error analysis of the method we
use the specification of a convection–diffusion problem and results, presented by Dong Liang et al.
[10], for the fractional step central difference method (FS-CDM) and the fractional step upstream
difference method (FS-USDM). The technique of fractional step is an efficient approach to solve
multidimensional problems by means of splitting space dimensions onto the separate subproblems.
The finite difference methods (USDM and CDM) are the classical solvers for convection–diffusion
and diffusion-dominated problems. However, the domination of the convection term might lead to
difficulties for these methods to approximate an accurate solution.

Here, the convection–diffusion of the Gaussian pulse with the standard deviation � = 0.1 and
centred at the point (a, b)= (0.5, 0.5) is simulated on the domain � = [0, 2] × [0, 2]. The hill
is convected by the constant velocity field v= (2, 2). The diffusion coefficient D is chosen as
10−3 and 10−1. The Dirichlet inflow and Newmann outflow boundary conditions, respectively,
on �in =[0; 2]× {x2 = 0} ∪ {x1 = 0} × [0; 2] and �out =[0; 2]× {x2 = 2} ∪ {x1 = 2}× [0; 2] are set

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1215–1238
DOI: 10.1002/fld



PARTICLE TRANSPORT METHOD 1229

0 5e+3 1e+4 1.5e+4 2e+4
0

0.005

0.01

0.015

0.02

0.025

er
ro

r 
in

 m
ax

 n
or

m
, 

m
ax

(a)
7.5

−4

−4.5

−5

−5.5

−5.5

−6

−6

−6.5

−7
5e−4

1.5e−3

2.5e−3

3.5e−3

4.5e−3

5.5e−3

8 8.5 9 9.5 10

 e
rr

or
 in

 m
ax

 n
or

m
, l

og
( 

m
ax

)

11

1

(b)

2e+3 6e+3 1e+4 1.4e+4 1.8e+4

m
as

s 
co

ns
er

va
tio

n 
er

ro
r, 

  m
as

s

(c)
8 8.5 9

the total number of nodes and particles, log(n+N)

the total number of nodes and particles, log(n+N)the total number of nodes and particles, n+N

the total number of nodes and particles, n+N
9.5 10

 m
as

s 
co

ns
er

va
tio

n 
er

ro
r,

 lo
g(

 m
as

s)

1

1

(d)

Figure 8. Convection–reaction of the Gaussian pulse, error analysis with respect to the total number of
nodes and particles: (a) error in l∞-norm, �∞; (b) error in l∞-norm, �∞, logarithmic scale; (c) relative

mass conservation error, �m; and (d) relative mass conservation error, �m, logarithmic scale.

Figure 9. Mixing of hot and cold fronts. Initial condition.

from the exact solution of the problem

u(x, t) = �2

s(t)
exp

(
− (x1 − a − v1t)2 + (x2 − b − v2t)2

2s(t)2

)
where s(t) = √

(�2 + 2Dt).
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Figure 10. Mixing of hot and cold fronts. Particle distribution, D = 10−5:
(a) t = 0.5; (b) t = 5; and (c) t = 10.

Figure 11. Mixing of hot and cold fronts. Solution obtained by PTM,
D = 10−5: (a) t = 0.5; (b) t = 5; and (c) t = 10.

Figure 12. Mixing of hot and cold fronts. Solution obtained by PTM,
D = 10−2: (a) t = 0.5; (b) t = 5; and (c) t = 10.

The simulation is continued till the time T = 0.6 with the time step �t = 0.1. To accom-
plish the comparison of the results, the number of nodes, n, of the computational grid for PTM
was approximately equal to the number of degrees of freedom, 1/h2, used for FS-CDM and
FS-USDM, i.e. the number of discretization points in x1- and x2-dimensions, where h is the step

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2007; 54:1215–1238
DOI: 10.1002/fld



PARTICLE TRANSPORT METHOD 1231

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(a)
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(b)
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(c)

0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(d)
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(e)
0 0.5 1 1.5 2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

(f)

Figure 13. Convection–diffusion of the Gaussian pulse, D = 10−3. Numerical and exact solution on the
grid with 10 145 nodes, �t = 0.1: (a) PTM, t = 0.2; (b) PTM, t = 0.4; (c) PTM, t = 0.6; (d) exact, t = 0.2;

(e) exact, t = 0.4; and (f) exact, t = 0.6.

Table II. Convection–diffusion of the Gaussian pulse, D = 10−3: error analysis.

PTM FS-CDM FS-USDM

error t n = 665 n = 2577 n = 10 145 h = 1/100 h = 1/100

�∞ 0.2 1.0109e−01 3.5716e−02 7.9107e−03 8.5363e−01 8.5826e−01
0.4 2.3885e−01 7.2807e−02 2.1919e−02 8.7061e−01 8.7301e−01
0.6 3.0581e−01 1.1488e−01 3.4336e−02 8.5529e−01 8.5693e−01

�2 0.2 6.5643e−03 1.8941e−04 4.8726e−04 1.4700e−01 1.4813e−01
0.4 1.7847e−02 5.0664e−03 1.3835e−03 1.5561e−01 1.5621e−01
0.6 2.1245e−02 6.9166e−03 1.9332e−03 1.5580e−01 1.5625e−01

of discretization. Thus, the grid in PTM numbering 10 145 nodes corresponds to the fractional
dimensions step h = 1

100 ; this grid is used as a basis for the construction of the adaptive particles
system with Nmax = 1 at each time step.

The numerical solution for the case of D = 10−3 obtained by PTM on the 10 145-node grid
is shown in Figure 13 as well as the exact solution on the same grid; it can be seen that
the approximation evaluated by the proposed technique demonstrates a good accordance with
the reference solution. The error magnitudes in l∞- and L2-norms, presented in Table II in
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Table III. Convection–diffusion of the Gaussian pulse, D = 10−1: error analysis.

PTM FS-CDM FS-USDM

error t n = 665 n = 2577 n = 10 145 h = 1/100 h = 1/100

�∞ 0.2 1.1739e−01 1.2746e−01 1.3185e−01 1.2670e−01 1.2857e−01
0.4 2.7657e−02 3.0650e−02 3.1401e−02 7.2594e−02 7.3658e−02
0.6 1.9055e−02 2.0748e−02 2.1275e−02 5.0645e−02 5.1397e−02

�2 0.2 1.4338e−02 1.5203e−02 1.5521e−02 4.2802e−02 4.3498e−02
0.4 5.3882e−03 5.6843e−03 5.7882e−03 3.2558e−02 3.3158e−02
0.6 2.5127e−03 2.5366e−03 2.5141e−03 2.4578e−02 2.5028e−02

comparison with those of FS-CDM and FS-USDM, indicate that for the convection-dominated case,
D = 10−3, PTM achieves better results already on the grid with 665 nodes (in terms of FS-CDM and
FS-USDM it corresponds to h ≈ 3

100 ). For a larger diffusion coefficient, D = 10−1, see Table III,
all three methods demonstrate nearly the same values of errors; however, PTM needs only 2577
(h ≈ 2

100 ) points, while FS-CDM and FS-USDM work with twice many points. In addition, it is
worth noticing that PTM demonstrates nearly the same results in the error for both convection-
dominated and convection–diffusion problems.

4.3. Experiment 3: chromatographic separation

Here, we simulate chromatographic separation to consider a system of CDR equations. Two mixed
substances are injected with appropriate solvents into a column, which can be described as a
one-dimensional domain due to dominance of its length. The time of the injection is usually very
short in comparison to the whole simulation period; thus in the beginning (the left end) of the
domain the mixture forms a pulse that moves and gradually separates with time, due to different
absorption properties of the components.

The chromatographic separation can be described by a number of numerical models (see, for
instance, [33–35]); in this work we consider the following CDR system:

�C1

�t
= −v

�C1

�x
+ D

�2C1

�x2
− p1(C

e
1 − Q1) on � ×[0, 400]

�C2

�t
= −v

�C2

�x
+ D

�2C2

�x2
− p2(C

e
2 − Q2) on � ×[0, 400]

�Q1

�t
= p3(C

e
1 − Q1) on �× [0, 400]

�Q2

�t
= p4(C

e
2 − Q2) on �× [0, 400]

(18)

Here Ci , i = 1, 2, are the concentrations of substances in a mixture to be separated, Qi , i = 1, 2,
are the absorbed concentrations, v is the convective velocity of the flow in the computational
domain � =[0, 50], D is the diffusivity coefficient, and pi , i = 1, 4, are the absorption parameters
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of the components. The term Ce
i is an equilibrium isotherm of the i th component given by

Ce
i = ei max{Ci , 0}�, � defines the profiles formed by separated substances; we shall consider

the case � = 0.7. The parameters of the problem are chosen as v = 0.6, p1 = 1.302, p2 = 1.0016,
p3 = 1.3 and p4 = 1, e1 = 2.4337 and e2 = 0.9230.
The initial conditions for the i th component, i = 1, 2, are

Ci (x, 0) = 0 on �

Qi (x, 0) = 0 on �
(19)

and boundary conditions for the i th component, i = 1, 2, are

Ci (0, t) =
{
0.03 if t�100

0 otherwise

�Ci (100, t)

�x
= 0 for t ∈ [0, 400]

(20)

For the numerical simulation the time step is �t = 0.5, the grid is the set of 200 points uniformly
distributed on �. On each mth time step, [tm−1, tm], m = 1700, system (18)–(20) is divided into
two subproblems in the framework of the proposed method: convection–absorption and diffusion.

At each time step particle systems are generated from the grid for all components, i.e. for
the concentration functions C1, Q1, C2 and Q2, to resolve convection and absorption parts of the
problem. Each set is adapted with the steep front adaptivity procedure on the basis of the grid-value
function of the respective concentration, while Nmax = 10. The movement of the particles and the
reaction of function values carried out by them are integrated by the fourth-order Runge–Kutta
method. To accomplish the next step—diffusion—the concentrations of the components C1 and
C2 are projected from the particles onto the grid, where the MOL is applied. For the sake of
comparison, whole CDR system (18)–(20) was also solved by only MOL with the same problem
and discretization parameters.

In [21] it was demonstrated how in the case of the convection domination PTM resolves the
discontinuities defined by the initial conditions with comparison to MOL. Here, the sharp fronts
develop during the simulation due to the inflow conditions and the absorption term. Figure 14
presents the solutions of the problem at t = 100, 200 and 300 with the diffusion coefficient
D = 10−5. The solution obtained by the combination of PTM and MOL in the framework of
the operator splitting is not contaminated by any artificial oscillations as it can be seen in
Figure 14(a)–(c). The method of lines, see Figure 14(d)–(f), demonstrates the generation of non-
physical negative concentration of C1 in the case of small diffusion coefficient. The concentration
of the injected substances with respect to time is shown in Figure 15. Here, for the case of
D = 10−5, the solution obtained by PTM, Figure 15(a), achieves the equilibrium between time
100 and 300 and then the concentration of the second component (C2 + Q2) decreases while the
first component (C1 + Q1) still saves the mass; this means that the part of the separated mixture
containing C1 and Q1 is still in the separation column while the part with C2 and Q2 reaches
its right end. The concentration equilibrium approximated by MOL, Figure 15(b), demonstrates
the artificial increasing of the mass for the first component while the mass of the second one is
decreasing. To achieve the high-quality resolution of the steep fronts for the considered problem,
MOL needs at least three times more grid nodes. To avoid the artificial growth of the mass in
this case, a non-negativity constraint can also be applied to the function value within the MOL
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Figure 14. Chromatographic separation problem, 200—node grid: the dashed line—C1 concentra-
tion; the solid line—C2 concentration: (a) PTM + MOL, t = 100; (b) PTM + MOL, t = 200;
(c) PTM + MOL, t = 300; (d) MOL, t = 100; (e) MOL, t = 200; (f) MOL, t = 300; (g) MOLs, t = 100;

(h) MOLs, t = 200; and (i) MOLs, t = 300.

algorithm. The results of the improved MOLs are demonstrated in Figures 14(g)–(i) and 15(c);
though concentrations reach the equilibrium in the time interval [100, 300], spurious oscillations
in the vicinity of steep fronts of C1 and C2 are now generated. It is worth noticing that in the
framework of PTM no special restrictions on the solution value is applied and the prevention of
oscillations is reached only by the implementation of the spatial adaptivity. This procedure allows
us to avoid the numerical oscillation even for a very sparse grid (∼ 50 nodes); however, in this
case the numerical diffusion due to linear interpolation within the projection increases. For the
relatively large diffusion, D = 10−1, both methods show good quality of approximation on the
same grids.

In addition, the execution time of the particle transport method in comparison to the method of
lines was checked on the zero-diffusion case that gives the results almost identical to the ones for
D = 10−5. Here the simulation interval is [0, 250] with �t = 0.5. We vary the number of nodes for
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Figure 15. Chromatographic separation problem, the concentration equilibrium:
the dashed line—C1 + Q1 concentration; the solid line—C2 + Q2 concentration:

(a) PTM + MOL; (b) MOL; and (c) MOLs.

Table IV. Chromatographic separation problem. Computational time (s) for PTM and
MOL with respect to the size of the computational grid, �t = 0.5, t ∈ [0, 250].

# Nodes 40 100 200 300 400 500

PTM 29.63 29.94 30.66 31.06 32.83 33.09
MOLs 20.11 29.8746 63.672 78.77 108.39 151.32
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Figure 16. Computational time for chromatographic separation problem, �t = 0.5, t ∈ [0, 250]: the solid
line—PTM; the dashed line—MOL.

the computational grid within MOL that corresponds to the fixed grid used to save the information
on Q1 and Q2 within PTM. The convection of C1 and C2 in PTM, as well as the absorption, is
evaluated on the adapted particle set that initially consists of 40 points; the functions Q1 and Q2
are projected from the fixed grid onto the particle system and back at each time step. Table IV and
Figure 16 show that the CPU time of PTM changes from 29 to 33 s, while the CPU time of MOL
grows from 20 to 151 s. The small variation in the execution time of PTM is explained by the fact
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Figure 17. Chromatographic separation problem, solution at t = 250 on different grids: the dashed
line—C1 concentration; the solid line—C2 concentration: (a) PTM, 40 nodes; (b) PTM, 400 nodes;

(c) PTM, 500 nodes; (d) MOLs, 40 nodes; (e) MOLs, 400 nodes; and (f ) MOLs, 500 nodes.

that the evaluation of the ODE systems (the most time-consuming procedure) is only performed
on the adapted particle set, the size of which is unchanged. The increase of the number of grid
nodes used as a storage for the functions Q1 and Q2 only means the growth of the CPU time
for the projection procedure that has an optimal complexity and takes about 20% of the whole
computational time. It is worth noting that although for the smallest size of the grid (40 nodes)
MOL works faster, large oscillations are generated in the vicinities of the steep front, while PTM
approximation is free of artificial oscillations, see Figure 17(a) and (d). However, PTM smooths
excessively the numerical solution on the coarse mesh. The increase of the number of grid nodes
allows us to reduce the numerical diffusion in PTM and spurious oscillations in MOL, but it leads
to the drastic change in MOL execution time. On the 400-node grid, where both methods give
already close results (further increasing gives almost the same solutions, see Figures 17(b), (c),
(e) and (f)), MOL is three times slower than PTM. Thus, we can conclude that for convection
dominated cases when the diffusion term can be dropped out, the particle transport method can be
successfully applied as an accurate and fast scheme. That is important, for instance, for problems
of parameter estimations, where a large number of the simulations are usually required.

5. CONCLUSIONS

In the paper, an explicit Eulerian–Lagrangian technique, the particle transport method (PTM), was
extended to the case of a convection–diffusion–reaction problem. In the framework of the operator
splitting the convection–reaction and diffusion subproblems are solved separately, where for the
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first one the PTM is used and the second is resolved by the mesh-based scheme, namely finite-
element method or the method of lines. The projection between a moving system of particles of
convection–reaction solver and the fixed grid of the diffusion one is accomplished by a procedure
based on linear interpolation. The possible singularities due to convection and reaction term are
treated with a high quality due to the spatial adaptivity within PTM. Such a combination allows us
to obtain a monotone method that exhibits a good mass conservation and accuracy on unstructured
grids; the numerical comparison shows that the proposed scheme can demonstrate better results
than some of the Eulerian methods based on structured grids.

Our current research is focused on combining results and solving such a problem as a gas bubble
dissolution in a viscous flow that presents a combination of incompressible Navier–Stokes and
CDR equations. Here the proposed technique can be used for the mass-transfer part of problem
as well as for the resolution of the movement of the interface between gas and liquid fractions,
described by convection of a level set function. We also suppose that the method can be very
efficient for the simulation of the atmospheric front movement and of the chemical crystallization.
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